Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Arch Toxicol ; 97(12): 3113-3128, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37712947

RESUMEN

Occupational and environmental exposure of various toxins or cigarette smoke causes non-small cell lung carcinoma (NSCLC); a devastating disease with a very low survival rate after metastasis. Increased activity of plasmin is a hallmark in NSCLC metastasis. It is accepted that metastatic cells exhibit higher plasmin activity than cells from primary tumors. Mechanisms behind this elevation, however, are barely understood. We compared plasmin activity and cell migration of A549 cells derived from a primary lung tumor with metastatic H1299 lung cells isolated from lymph nodes. Surprisingly, we found higher plasmin activity and migration for A549 cells. mRNA levels of the plasminogen activator inhibitor-1 (PAI-1) were higher in H1299 cells and activity of extracellular-regulated kinases-1/2 (ERK-1/2) was increased. An inhibitor of ERK-1/2 decreased PAI-1 mRNA levels and increased plasmin activity or cell migration in H1299 cells. Transforming growth factor-ß (TGF-ß) decreased plasmin activity and migration in A549 cells but enhanced both in H1299 cells. The cytokine massively increased PAI-1 and decreased urokinase plasminogen activator (uPA) levels in A549 cells but strongly induced uPA and only weakly PAI- 1 expression in H1299 cells. Consequently, TGF-ß enhanced plasmin activity and cell migration in H1299. Additionally, TGF-ß activated ERK-1/2 stronger in H1299 than in A549 cells. Accordingly, an ERK-1/2 inhibitor completely reversed the effects of TGF-ß on uPA expression, plasmin activity and migration in H1299 cells. Hence, we provide first data indicating TGF-ß-promoted increased plasmin activity and suggest that blocking TGF-ß-promoted ERK-1/2 activity might be a straightforward approach to inhibit NSCLC metastasis.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Inhibidor 1 de Activador Plasminogénico/genética , Inhibidor 1 de Activador Plasminogénico/metabolismo , Fibrinolisina/metabolismo , Activador de Plasminógeno de Tipo Uroquinasa/genética , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo , Neoplasias Pulmonares/patología , Movimiento Celular , ARN Mensajero/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
2.
Am J Respir Cell Mol Biol ; 68(3): 314-325, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36378826

RESUMEN

TRPA1 (transient receptor potential ankyrin 1) is a nonselective Ca2+-permeable cation channel, which was originally cloned from human lung fibroblasts (HLFs). TRPA1-mediated Ca2+ entry is evoked by exposure to several chemicals, including allyl isothiocyanate (AITC), and a protective effect of TRPA1 activation in the development of cardiac fibrosis has been proposed. Yet the function of TRPA1 in TGF-ß1 (transforming growth factor-ß1)-driven fibroblast-to-myofibroblast differentiation and the development of pulmonary fibrosis remains elusive. TRPA1 expression and function were analyzed in cultured primary HLFs, and mRNA concentrations were significantly reduced after adding TGF-ß1. Expression of genes encoding fibrosis markers (e.g., ACTA2, SERPINE1 [plasminogen activator inhibitor 1], FN1 [fibronectin], COL1A1 [type I collagen]) was increased after siRNA-mediated downregulation of TRPA1 mRNA in HLFs. Moreover, AITC-induced Ca2+ entry in HLFs was decreased after TGF-ß1 treatment and by application of TRPA1 siRNAs, while AITC treatment alone did not reduce cell viability or enhance apoptosis. Most interestingly, AITC-induced TRPA1 activation augmented ERK1/2 (extracellular signal-regulated kinase 1/2) and SMAD2 linker phosphorylation, which might inhibit TGF-ß-receptor signaling. Our results suggest an inhibitory function of TRPA1 channels in TGF-ß1-driven fibroblast-to-myofibroblast differentiation. Therefore, activation of TRPA1 channels might be protective during the development of pulmonary fibrosis in patients.


Asunto(s)
Fibrosis Pulmonar , Factor de Crecimiento Transformador beta1 , Humanos , Factor de Crecimiento Transformador beta1/metabolismo , Fibrosis Pulmonar/patología , Miofibroblastos/metabolismo , Fibroblastos/metabolismo , Diferenciación Celular/fisiología , Fibrosis , ARN Mensajero/genética , Células Cultivadas , Canal Catiónico TRPA1/metabolismo
3.
Arch Toxicol ; 96(10): 2767-2783, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35864199

RESUMEN

Sustained exposure of the lung to various environmental or occupational toxins may eventually lead to pulmonary fibrosis, a devastating disease with no cure. Pulmonary fibrosis is characterized by excessive deposition of extracellular matrix (ECM) proteins such as fibronectin and collagens. The peptidase plasmin degrades the ECM, but protein levels of the plasmin activator inhibitor-1 (PAI-1) are increased in fibrotic lung tissue, thereby dampening plasmin activity. Transforming growth factor-ß1 (TGF-ß1)-induced activation of SMAD transcription factors promotes ECM deposition by enhancing collagen, fibronectin and PAI-1 levels in pulmonary fibroblasts. Hence, counteracting TGF-ß1-induced signaling is a promising approach for the therapy of pulmonary fibrosis. Transient receptor potential cation channel subfamily M Member 7 (TRPM7) supports TGF-ß1-promoted SMAD signaling in T-lymphocytes and the progression of fibrosis in kidney and heart. Thus, we investigated possible effects of TRPM7 on plasmin activity, ECM levels and TGF-ß1 signaling in primary human pulmonary fibroblasts (pHPF). We found that two structurally unrelated TRPM7 blockers enhanced plasmin activity and reduced fibronectin or PAI-1 protein levels in pHPF under basal conditions. Further, TRPM7 blockade strongly inhibited fibronectin and collagen deposition induced by sustained TGF-ß1 stimulation. In line with these data, inhibition of TRPM7 activity diminished TGF-ß1-triggered phosphorylation of SMAD-2, SMAD-3/4-dependent reporter activation and PAI-1 mRNA levels. Overall, we uncover TRPM7 as a novel supporter of TGF-ß1 signaling in pHPF and propose TRPM7 blockers as new candidates to control excessive ECM levels under pathophysiological conditions conducive to pulmonary fibrosis.


Asunto(s)
Fibrosis Pulmonar , Canales Catiónicos TRPM , Colágeno/antagonistas & inhibidores , Colágeno/metabolismo , Fibrinolisina/metabolismo , Fibroblastos , Fibronectinas/efectos adversos , Fibronectinas/antagonistas & inhibidores , Fibronectinas/metabolismo , Fibrosis , Humanos , Pulmón/metabolismo , Inhibidor 1 de Activador Plasminogénico/genética , Inhibidor 1 de Activador Plasminogénico/metabolismo , Proteínas Serina-Treonina Quinasas , Fibrosis Pulmonar/inducido químicamente , Canales Catiónicos TRPM/metabolismo , Factor de Crecimiento Transformador beta1/antagonistas & inhibidores , Factor de Crecimiento Transformador beta1/metabolismo
4.
Cells ; 11(4)2022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-35203289

RESUMEN

Glucose provides vital energy for cells and contributes to gene expression. The hypothalamus is key for metabolic homeostasis, but effects of glucose on hypothalamic gene expression have not yet been investigated in detail. Thus, herein, we monitored the glucose-dependent transcriptome in murine hypothalamic mHypoA-2/10 cells by total RNA-seq analysis. A total of 831 genes were up- and 1390 genes were downregulated by at least 50%. Key genes involved in the cholesterol biosynthesis pathway were upregulated, and total cellular cholesterol levels were significantly increased by glucose. Analysis of single genes involved in fundamental cellular signaling processes also suggested a significant impact of glucose. Thus, we chose ≈100 genes involved in signaling and validated the effects of glucose on mRNA levels by qRT-PCR. We identified Gnai1-3, Adyc6, Irs1, Igfr1, Hras, and Elk3 as new glucose-dependent genes. In line with this, cAMP measurements revealed enhanced noradrenalin-induced cAMP levels, and reporter gene assays elevated activity of the insulin-like growth factor at higher glucose levels. Key data of our studies were confirmed in a second hypothalamic cell line. Thus, our findings link extra cellular glucose levels with hypothalamic lipid synthesis and pivotal intracellular signaling processes, which might be of particular interest in situations of continuously increased glucose levels.


Asunto(s)
Glucosa , Transcriptoma , Animales , Colesterol/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Glucosa/metabolismo , Hipotálamo/metabolismo , Ratones , Transducción de Señal , Transcriptoma/genética
5.
Front Plant Sci ; 7: 1880, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28066452

RESUMEN

Drosophila suzukii is threatening soft fruit production worldwide due to the females' ability to pierce through the intact skin of ripe fruits and lay eggs inside. Larval consumption and the associated microbial infection cause rapid fruit degradation, thus drastic yield and economic loss. Cultivars that limit the proliferation of flies may be ideal to counter this pest; however, they have not yet been developed or identified. To search for potential breeding material, we investigated the rate of adult D. suzukii emergence from individual fruits (fly emergence) of 107 accessions of Fragaria species that had been exposed to egg-laying D. suzukii females. We found significant variation in fly emergence across strawberries, which correlated with accession and fruit diameter, and to a lesser extent with the strawberry species background. We identified accessions with significantly reduced fly emergence, not explained by their fruit diameter. These accessions constitute valuable breeding material for strawberry cultivars that limit D. suzukii spread.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...